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SECOND ORDER VIBRATION OF FLEXIBLE SHAFTS

By R. E.D. BISHOP anp A. G. PARKINSON
Department of Mechanical Engineering, University College London

(Communicated by H. M. Barlow, F.R.S.—Recerved 11 January 1965)
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First order (i.e. ‘once per revolution’) forced bending vibration of high speed flexible shafts is caused
by the small defects of initial bend and lack of mass balance that are inevitably present in any rotor.
It can be reduced to an acceptable level by modal balancing. Large modern alternator rotors are
particularly sensitive to vibration and it has been found that, while accurate balancing is of cardinal
importance, it is not sufficient to remove all vibration. There remains, in particular, second order
(or ‘twice per revolution’) forced vibration which arises from the dual flexural rigidity that is
virtually inescapable in a two-pole machine; the motion is excited by the weight of the rotor. This
has now emerged as the source of considerable difficulty, largely because it can be cured only at the
design stage and cannot be ‘balanced’. (Certain trimming’ modifications can be made, of course,
but these present formidable problems of their own.)

A theoretical treatment of the problem is given which is much less restrictive than that previously
available. An analytical basis is provided for further work of a more specific nature, should it be
required. The motion is examined mode by mode and various properties of second order vibration
are exposed. In particular it is shown that the polar representation that has been successfully used
in the analysis of first order vibration is also of value with second order vibration. This is illustrated
and confirmed with results taken from a 350 MW rotor.
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= Since the Second World War, the sizes of turbo-generator rotors have increased dramati-
E 8 cally. Figure 1 shows the relative sizes of the forgings from which these rotors are cut and
—~ it will be seen that the rotors with an output of about 750 MW that are now on the drawing

board are very much longer than the 120 MW rotors that were the largest made in
the 1940’s. It will be seen that, as the output of these machines has been increased so the
length of the rotors has increased, but not the diameters—for increases of diameter are
limited by stress considerations. This increase of slenderness has meant that lower critical
speeds have now to be contended with. This, in turn, has meant that sensitivity to vibration
has increased.
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2 R. E. D. BISHOP AND A. G. PARKINSON

Flexural vibration of a large alternator rotor when it is running at speed is one of the
most dangerous forms of vibration met with in engineering practice. It is easy to bend
a shaft when it is running at a critical speed, and a bent shaft vibrates more violently than
a straight one. If a 500 MW rotor weighing more than 70 tons were to begin a violent
oscillation when it was running at high speed, a colossal amount of damage could be done.
The position is not improved by the very high polar moment of inertia of these rotors which
ensures that rapid changes of speed cannot be made.
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Ficure 1. (By courtesy of General Electric Company, Witton.)

When supported in its two bearings, a 500 MW rotor has a sag of about 0:090in. This
sag becomes modified when the shaft rotates, though direct measurement of this modifica-
tion would be extremely difficult.

Superimposed on this sag there are vibrations of the rotor. Those of most importance
here are forced vibrations and they have frequencies that arerelated to the speed of rotation.
They fall into two distinct categories:

(a) First order vibration

A first order vibration is one in which the shaft vibrates relative to non-rotating axes
with a frequency in c¢/s numerically equal to the angular velocity of the shaft in rev/s.
It is due to the small (and inescapable) defects that are left in the shaft by the processes of
manufacture—defects of lack of balance and of initial lack of straightness. The rational
study of first order vibration, that is forced vibration due to unbalance, may be said to
have begun with the work of Jeffcott (1919). Both the motion itself and techniques of sup-
pressing it by the process of ‘balancing’ have been studied intensively during the last few
years, largely as a result of difficulties raised by modern alternator rotors (Lindley & Bishop
1963). The predictions of theory have been found valid in experiments on laboratory
models and have also been adapted for use with alternator rotors (see Moore & Dodd 1964;
Parkinson & Bishop 1965). The result is that the position is now far better than it was.
By dealing with first order vibration on the basis of modal balancing theory, the position
has now been reached when first order vibration is no longer a serious problem.
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Ficure 3 (h).

Phal. Trans. A, volume 259, plate 1

(By courtesy of English Electric Company, Stafford.)

{(FFacing p. 3)
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SECOND ORDER VIBRATION OF FLEXIBLE SHAFTS 3

(b) Second order vibration

This motion is such that the shaft vibrates relative to stationary axes with a frequency
in ¢/s numerically equal to twice the angular velocity of the shaft in rev/s. Now that first
order vibration is relatively domesticated, second order vibration is emerging as a prime
source of difficulty with some large alternators. In a very real sense, it is a more difficult
one to counter than the forced vibration of ‘unbalance’.

Practical balancing techniques are invariably based upon the assumption that the
system being balanced possesses axial symmetry. Now second order vibration cannot be
accounted for in general under this assumption of axial symmetry, although, for example,
Soderberg (1932) and Biezeno & Grammel (1954) explain a form of second order vibration
which, while it depends on mass unbalance, is likely to be very small. It has been observed
in practice, however, that serious second order vibration is independent of mass unbalance.
This vibration is displayed by a shaft possessing a slight lack of axial symmetry, the motion
being caused by the weight of the shaft.

(a) ()
Ficure 2. (By courtesy of General Electric Company, Witton.)

It would in fact be very difficult accurately to design an alternator rotor so as to have
axial symmetry in a dynamical sense. The rotor is, in effect, a large rotating electromagnet,
having a north pole and a south pole on opposite sides of the rotor and having slots cut in
it in which copper conductors are embedded to provide the magnetic field. The cross-
section of a 120 MW alternator rotor after slotting is shown in figure 2 (a). It is clear from
the figure that the flexural rigidity of the shaft is unlikely to be the same for bending about
the horizontal and the vertical neutral axes, even after copper conductors and steel wedges
have been placed in the slots. In attempts to equalize these rigidities, one of two schemes is
usually adopted. In the first, the pole faces are slotted as shown in figure 2 (4). In order to
maintain the magnetic flux density, the slots in the pole faces are filled with steel bars that
are wedged in. The second technique is to build a rotor in the manner of figure 2 (a) and
then to cut lateral slots across the poles at intervals along the length of the rotor. Figure 3 (a)
plate 1, shows a rotor of the first type and figure 3 (b) shows one of the second.

The possibility of second order vibration has been recognized and a body of theory
exists (see, for instance, Soderberg 1932 ; Robertson 1933 ; Smith 1933 ; Taylor 1940; Laffoon
&Rose 1940; Mortensen & Ryan 1940; Dick 1948; Tondl 1958 and Hull 1961). This theory
is based mainly on an adaptation of the original theory of Jeffcott. It postulates a massless

1-2
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4 R. E. D. BISHOP AND A. G. PARKINSON

shaft having unequal flexibilities in two directions at right angles and carrying a mass at
its mid-section as shown in figure 4. But while a great deal of insight has been obtained
from this model, it is not really sufficient for the needs of the engineer, and a more complete
picture is needed.

Fundamentally, the shortcomings of previous theory can be traced back to the violence of
the idealization upon which it is based. The nature of the speed-dependent sag of a
real rotor and the relative importance of the amplitude of second order vibration and of
the sag are typical matters which cannot be elucidated in terms of previous theory. Again,
if a shaft has unequal flexural rigidities, how must the usual process of modal balancing be
modified ? Questionsofthissort are quite basic and answers to them are not in general avail-
ableon the basis of previous theory. In fact, whenheis confronted with detailed measurements
obtained for the whole range of running speed, the analyst has a difficult task of interpreta-
tion to perform. Positive identification of an amplitude peak may not be easy and a decision
as to what should be done about it may be difficult to reach.

[

77%7 772;77

LJ

FiGURE 4.

The purpose of this paper, then, is to put the theory of second order vibration on a
broader basis. It does so by relaxing the violent idealization of the model shown in figure 4.
A less restrictive theory has been advanced in a few papers (see, for example, Kellenberger
1955; Tondl 1958; Dimentberg 1961), but none of these has attempted a modal analysis.
They have usually presented a closed solution to the problem of a uniform, flexible shaft
supported in self-alining bearings. Dimentberg, however, does discuss the effects of damping.
The present paper provides answers to questions of the type referred to above and shows how
other questions can be tackled if the need should arise. Finally, a technique for displaying
results is suggested and illustrated. When suitably developed, this technique should provide
the vibration analyst with a convenient means of interpreting observed vibrations.

Alternator rotors are supported in plain bearings and it is undoubtedly true that these
bearings present unequal dynamical flexibilities in the vertical and horizontal directions.
Now asymmetry of the bearings introduces further modifications to the vibration of a rotor,
including the second order vibration. This form of asymmetry, however, cannot by itself
cause second order vibration. Therefore, since bearing asymmetry seriously complicates the
problem, all consideration of it is left out in the present treatment. The motion of a shaft
with axial symmetry supported in asymmetric bearings has been examined and will be
reported elsewhere (Parkinson 1965). A modal analysis of the combined effects of both
forms of asymmetry is very complicated. An indication of this is given by the treatment of
the simple rotor of figure 4, when supported in asymmetric bearings (see, for example,
Foote, Poritsky & Slade 1943 ; Smith 1933).


http://rsta.royalsocietypublishing.org/

/.
/ B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SECOND ORDER VIBRATION OF FLEXIBLE SHAFTS 5

NotaTIiON
The notation of other than local importance is as follows:

4,,B,,C,, D, constants partly determining amplitude of vibration due to weight of shaft
(see equation (34))

- 1942

, = Y, ((rror)

dp function of x representing mass per unit length of non-uniform shaft

(dp), reference value of mass per unit length, equals 4p for uniform shaft

a,a’ components of eccentricity of mass centre of any cross-section of shaft parallel
to directions OU, OV (functions of )

a =a-+t1ia

a,,a, components of a, a’ in rth pair of principal modes of shaft

a, =a,+1a,

at =a,—1a,

b,,b; coefficients of external and internal viscous damping respectively

D,,D,, D, points at ends of ‘resonance diameters’ in figures 14 and 15

EI flexural rigidity of shaft in OXU plane

(ED)' flexural rigidity of shaft in OXV plane

E, function of Q introduced in equation (27)

F, constant introduced in equation (27)

g acceleration due to gravity

g, component of g in rth pair of modes (see equation (36))

K = (EI)'|EI for non-uniform shafts, if this ratio is constant

[ length of shaft

0XYZ axes fixed in space such that OX is horizontal and parallel to undeflected axis
of bearings, OY is horizontal and OZ is vertically upwards

oxuv axes rotating with shaft such that OXU and OXV coincide with the principal
planes of minimum and maximum flexural rigidity respectively

P,Q, complex constants describing distortion of shaft due to its weight (see
equations (37))

R, see equation (71)

¢ time variable

uyu' displacements of shaft parallel to axes OY and OZ respectively

0,0’ displacements of shaft parallel to axes OU and OV respectively

Vg, Vg components of initial bend of shaft parallel to axes OU and OV respectively

x distance along shaft

VA normalizing factor for characteristic functions (see equation (7))

a,, %, 0,0,  coefficients in the expressions for the principal modes of free vibration of
non-rotating shaft
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6 R. E. D. BISHOP AND A. G. PARKINSON
€, component of initial bend in rth pair of modes (see equation (63))
_1 (24,07
gr = tan™! (m)
i = v+
n* =9 —0
n, component of 7 in 7th pair of modes (see equation (23))
a, =tan~!(a,/a,), angular location of plane of unbalance in rth pair of modes
relative to axes OXUV
A degree of asymmetry of cross-section of uniform shaft (see figure 7)
A, see equation (75)
Ky V) rth damping factors for external and internal damping respectively
A, minimum value of g, for which shaft is stable in 7th pair of modes at speeds
between v, and w,
¢ =yt
O 3040
5(2) = % Pr ¢r(x) e
r=1
&, component of £ in rth pair of modes (see equation (38))
gD, £ components of { and £? respectively in rth pair of modes (see equations (51)
and (52))
s
o, = tan~! (6’2(0_53—2)
P, (%) rth characteristic function
Q angular velocity of shaft
Q, = 0, 0, [20F
w, rth natural frequency of non-rotating shaft in flexure in OXU plane
W, rth natural frequency of non-rotating shaft in flexure in OXV plane
o see equations (16)

EQUATIONS OF MOTION

Following the earlier analysis of systems with axial symmetry (Bishop 1959) let OX
represent the undeflected axis of the bearings, assumed to be horizontal. The axes OXYZ
are formed by defining two mutually orthogonal fixed directions OY and OZ in a plane
perpendicular to OX, such that OY is horizontal and OZ is vertically upwards. Similarly,
let OXUYV be a set of rectangular axes such that the directions OU and OV rotate about
the axis OX with the angular velocity € of the shaft.

At any section along the axis OX the shaft has two orthogonal principal planes of flexure,
and it will be assumed that these principal planes are the same at all sections along the
axis OX. The directions OU and OV will be associated with these principal planes of flexure,
in fact with the planes of minimum and maximum flexural stiffness respectively (as indicated
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SECOND ORDER VIBRATION OF FLEXIBLE SHAFTS 7

in figure 5 which shows a cross-section of the shaft). The deflexion of the centre E of the shaft
at any section x along OX may be expressed by coordinates «(x, f) and #'(x, f) relative to the
fixed directions OY and OZ respectively. Alternatively this deflexion may be described by
coordinates v(¥, f) and v'(x,{) measured along the rotating axes OU and OV respectively
(see figure 5). The two sets of coordinates are related by the following transformations:

u = vcos Qt—v" sin 4,
u' = vsinQ¢+v" cos Q.

(1)

In the analysis of shaft systems with axial symmetry, both sets of coordinates are used;
some particular motion may be described more simply with one than with the other. For
present purposes the equations of motion are most readily solved in terms of the coordinates
v and v’, no matter which part of the motion is being discussed. Ifit is required, the distor-
tion of the shaft relative to the fixed axes 0 XYZ can always be found through equation (1).

vV Z

FicurE 5

Let the flexural rigidities of the shaft at any axial section be El and (EI)’, in the planes
OXU and OXV respectively. In general, the cross-section of a shaft varies along its length
so that these rigidities are functions of x. The displacement of the point £ on the axis of the
shaft is described by the equations,

[(A )O] — Q2 +A 32[EI ] 20" — (,f)OQ”““Q +A gxg[EI&)v"] gsing(z;;

o 0,467 ., g, 1 02 b,
and i +[(Ap)0:|v — 2%y +Z/3W|:(EI :I+2Q +(A )o

a Q2

(3)

Apart from the allowance for unequal stiffnesses, the formulation of these equations has
been described before (Gladwell & Bishop 1959). Through the coefficients 4, and b,
allowance is made for external and internal viscous damping forces which act at the centre
E of any section of the shaft. The departure of the mass centre, C, at any cross-section of the

32
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8 R. E. D. BISHOP AND A. G. PARKINSON

shaft from the geometric centre E is represented by the components a(x) and a'(x), as
shown in figure 5. Any initial lack of straightness in the shaft is denoted by the initial bend
vo(x) and vg(x). The remaining symbols are briefly explained in the list of notation.

If the shaft under consideration were vertical, then the undeflected bearing axis OX
would also be vertical. In this event, a set of rotating axes OXUV can still be defined and
the equations of motion set up in terms of the coordinates v, v” as before. In fact the resulting
expressions would be identical to equations (2) and (3), except that the terms gsin Q¢ and
g cos Q¢ would be missing. The flexural vibration of a vertical shaft, therefore, is not affected
by the weight force and the solutions of equations (2) and (3) which are arrived at later in
this paper must be interpreted with g set equal to zero. We have ignored here the force which
would be applied to a vertical shaft along its axis by the bearings. This force would lower the
critical speeds if the weight were borne at the bottom end of the shaft, and raise them if the
shaft were suspended from the top.

The solution of the equations of motion for systems with axial symmetry depended upon
the existence of distinct principal modes of free vibration of the shaft in the absence of
damping and rotation. The modes are determined by their natural frequences and
characteristic functions—the latter defining the modal shapes. The principal modes are
orthogonal in the sense that a vibration in one mode is independent of that in any other.
Further, owing to axial symmetry, the principal modes and natural frequencies of any
shaft are the same in all planes through the geometric axis of the shaft. On this basis the
equations of motion can be solved for each principal mode in turn and the total vibration
determined as the sum of the component displacements so found.

In general, if a shaft has distinct principal planes of flexure, then the principal modes of
free vibration in these two planes are different. If it is allowed for, this introduces con-
siderable complication into the analysis and (so far as the authors are aware) it has
effectively prevented all progress in arriving at a really general theory. For the present, the
simplifying assumption will be retained, that the principal modes of vibration in the OXU
and OXV planes are of the same form so that a single set of characteristic functions serves
for both. It may be noted that this simplification is justified if two restrictions are imposed
on the shaft and its bearings:

(a) The analysis is confined to a shaft whose cross-section remains constant along its
length; that is the flexural rigidities EI and (EI)" are independent of the distance x along
the axis OX. In these circumstances the mass per unit length of the shaft Ap = (4p),,
a constant. A slight relaxation in this restriction can be achieved by allowing the cross-
section of the shaft to vary, such that (EI)" = K(EI) where K is constant.

(b) The constraints of the bearings are represented by ideal end conditions, so that the
shaft can be treated as having ‘clamped’, ‘pinned’, ‘sliding’ or ‘free’ ends.

As a result of these simplifications the principal modes in the principal planes of flexure
still have distinct natural frequencies, but the characteristic functions in the two directions
are identical. Thus free vibration in the principal modes of the non-rotating shaft in the
absence of damping are described by
v = ¢@,(x) [¢, cosw, t+f,sinw,t], 12 .
v = é,() [a;cosw;t+ﬂ;sinw;t],} (r=12-.), (4)
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SECOND ORDER VIBRATION OF FLEXIBLE SHAFTS 9

where a,, ;. ... are constants. The characteristic functions ¢,(x), ¢,(x), ... are defined by the
boundary conditions at the bearings and must satisfy the following differential equations:

EId*g,

Ap dxt ; §,(), \
ET)" d* ,
(A,O) E‘rj{: w72¢r(x)’
™ | ®)
or Ap dxz[ dxz] =04, (%),
12 2¢7 K d2[,d247
T/JEE[(EI> d;?; “Zpael P d;g = 0 ,(%).

The latter pair of equations refer to the simple form of non-uniformity described in
restriction (a) above.
Thus the natural frequencies for the two principal planes are related by
a)2 _ EI
- (ED)
The analysis that follows is conﬁned to uniform shafts, so that the principal modes are
orthogonal in the sense that

[s@sma={y LE0 (7)

< 1. (6)

Z, a constant

This relation is a direct consequence of the equations (5) and the end conditions. If desired,
it could very easily be rephrased for shafts of non-uniform cross-section such that

(EI)" = K(EI),
where K is constant. For the simple shafts being considered here the functions ¢,(x) have
been tabulated (Bishop & Johnson 1960).
On the basis of the above simplifications it is possible to solve the equations of motion (2)
and (3) in terms of orthogonal characteristic functions.

VIBRATION OF A UNIFORM, AXIALLY ASYMMETRIC SHAFT
IN ‘IDEAL’ BEARINGS

Although the main subject of this paper is the second order (‘twice-per-revolution’)
vibration of a horizontal axially asymmetric rotating shaft due to its own weight, it will be
worth while briefly to examine the free vibration and the forced vibration due to unbalance.
There are several distinct features of these vibrations which will help to identify the presence
of axial asymmetry. Thus there will be evidence, independent of the actual twice-per-
revolution vibration, to suggest asymmetry in the shaft. (A more complete discussion of
these motions, and also of the balancing problem, is given elsewhere (Taylor 1940;
Parkinson 1965).)

The equations of motion of a uniform shaft may be derived from equations (2) and (3)

in the form b b ET d*v
- e il 2 5 . e I — 2_os1
v+[ p :]v Q% +A 5 — 200 Qv a€)? — g sin Q4 (8)
.y be bi ./ 2.,/ (EI) 84 e . 2
v+[7m_]v_gzv+ 4 a4+2£2 +A Qv = a’(Q?—gcos Q. (9)

2 Vor. 259. A.
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10 R. E. D. BISHOP AND A. G. PARKINSON

For brevity the possibility of initial lack of straightness (or ‘elastic unbalance’), as
represented by the terms containing v, and vj in equations (2) and (3), has been disregarded
in forming equations (8) and (9). The treatment of this defect is very similar to that of mass
unbalance, and in any case forced vibration due to want of balance is not the main subject
of this investigation.

An alternative form of the equations of motion (8) and (9) which is often useful is obtained
by introducing the complex vector notation,

n=v+4iv'. (10)

Expressions (8) and (9) can then be replaced by the smgle equatlon

H[wr] o2y 2[EI+ (EI)’ M I:EI

3x4
+2iQf]'—|—;f;Q77:‘a‘Q2——ige‘im, (11)

where a=a-+t+iad" and g* =v—1w'. (12)

As the equations of motion (8) and (9) or (11) are linear, the various forms of vibration
can be investigated independently and the total vibration found as a linear combination of
the separate solutions. Thus the free vibration of the system is represented by the solution
of equations (8) and (9) with the right hand sides zero—that is, by the complementary
functions of the differential equations of motion. Similarly, the effect of unbalance can be
examined by omitting the terms due to the weight of the shaft and finding the particular
integrals of the resulting differential equations.

(a) Free vibration

A complete solution for the free vibration of the asymmetric shaft is complicated,t but
we are mainly interested in the possibility of this free vibration being unstable. If equations
(8) and (9) are solved for free vibration, and the Routh stability criteria are applied to the
result, it is found that the rotating shaft is stable in the 7th pair of modes at all shaft speeds
) for which all the following conditions are satisfied :

(Q2—0?) (Q?—0?) +4p2 0F202 > 0, (13)
(7, 02+ (j—0,) Q2 > 0, (14)
[ -0,)2 0322 O] [(s 40,2037 192 Q2] 4 s, +0)2(02—02)2 > 0, (15)
where 20} = w02,
b/ Ap — 2,03, (16)

b,/ Ap = 2v,0¥.

It will be noticed that inequality (13) does not contain the internal damping factor ,,
whereas (14) and (15) do. These conditions are thus of two sorts.
If the shaft has axial symmetry (that is 0, = 0} = v,), condition (15) reduces to the

standard form Q< o,[l4+u/v] (17)

T The special case of an undamped uniform pinned-pinned shaft has been solved by Johnson (1952),
Tondl (1958) and Dimentberg (1961).
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SECOND ORDER VIBRATION OF FLEXIBLE SHAFTS 11

(see, for example, Bishop 1959). Under these circumstances condition (14)1 predicts
instability at a speed equal to, or higher than, that determined by inequality (17) and
relation (13) is aways satisfied.

For a shaft with axial asymmetry inequalities (14) and (15) are harder to interpret, but
at least they show that the shaft is stable in the rth pair of modes for all shaft speeds less
than €, (except where restricted by condition (13)), where €, satisfies the inequality

Q> 0¥t fv,) > 0,(1+4ln) > 0, (18)

Thus the instability due to internal damping certainly occurs at a speed higher than that
for the corresponding symmetrical shaft of flexural rigidity £7 in the same bearings.

There remains the instability that is governed by inequality (13), which is independent
of the internal damping. Inspection of this condition shows that the shaft may be unstable
in the rth pair of modes at speeds of rotation £ given by

(1—2) [ (5 +w;) -] < () < -2+ [ (G ’)2—4/{3(1—#%)]’}.

(19)
For small external damping 4, < 1 and 24, < (0> —0?)/(v,?+w?) this inequality reduces to
the simpler approximate form 0, <Q <. (20)

Clearly the shaft may be unstable in speed regions bounded approximately by the two
critical speeds in each pair of modes. This range of instability in the rth pair of modes can,
however, be reduced either by increasing the external damping in the system or by de-
creasing the axial asymmetry. Indeed the unstable speed range vanishes completely if the
damping is given approximately by

b, lo?2—w? 1 (EI) —

_ s el—et 1(ED'—EI 21)
Sdpo* M7 3wt e~ 2 (B +EI (

This form of instability, which is due directly to the unequal shaft stiffnesses, does not
arise in shafts possessing axial symmetry. For the latter, the inequalities (19) do not define
any real ranges of speed. Inspection of expression (21) suggests that, for any given external
damping represented by the damping coefficient 4, (which is independent of the modes in
question) the shaft is more likely to be stable in the lower pairs of modes rather than the
higher ones, since the modal damping coefficient x, decreases as the order of the pair of
modes in increased.

The necessity of avoiding this type of instability imposes a considerable restriction on the
design of large, high speed rotors. It is for this reason that modern alternator rotors have
their pole faces slotted in an attempt to reduce inequalities of stiffness (see figure 3). This
design restriction is illustrated by the curves in figure 6.

Relation (21) states that, for the shaft to remain stable at speeds between the critical
speeds in the rth pair of modes, the damping coefficient in these modes must exceed a certain

critical value, g,, say, such that
1 (EI)'—EI
#r =W =3 (EIV +EI

1 Note that this condition need only be considered if », > u,.

(22)


http://rsta.royalsocietypublishing.org/

)\
C

|

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I §
yas

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

12 R. E. D. BISHOP AND A. G. PARKINSON

The variation in s, with the degree of asymmetry of shaft cross-section is shown in figure 6
for the three cross-sections of figure 7. The degree of asymmetry is expressed in the form of
a non-dimensional factor A which is the ratio of the thickness of the cross-section in the OU
direction to that in the OV direction. Thus A = O4/OB, as in figure 7. In considering the
curves of figure 6 it must be remembered that g, is generally less than 0-1 and often very
much smaller.

05 I I I

0-4— -

0-2 \ -

I I | 1 N\
0 04 08
A
Ficure 6. , Shaft of figure 7 (a); — — — —, shafts of figures 7(b) and (c)
Vv |4
B BV B
AU o—a Y A Y
(@) () ()

Ficure 7. (@) Circular shaft with flats parallel to OV (b) rectangular shaft;
(¢) elliptical shaft.

(b) Forced vibration
The forced vibration of the rotating shaft due to mass unbalance is represented by the
particular integral of equation (11) with only the aQ)? term on the right hand side. This
forced vibration may be expressed in the form

7= 31,4,

© 1, Q2% e [ (0¥2—Q2)2 + 442 02 Q2] + Hw,? —0?) T} Q2
e G ragomcr T e (@)

r=1

s
where (= tan“(jf; %82) . (24)
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SECOND ORDER VIBRATION OF FLEXIBLE SHAFTS 13
This expression contains the quantities
ke am} (25)
a:’k = G, — 14y,

which are obtained by expanding the mass unbalance in the form of modal components,

such that oo
ax) = 3 2,4,(x),
r;l l (26)
3~ [ () ¢,(x) .

The nature of the vibration—or, rather, distortion—described by equation (23) and the
associated balancing problem will be discussed in greater detail elsewhere (Parkinson 1965).
It will suffice, here, merely to indicate a few of its features. The most obvious characteristic
of the distortion defined by relation (23) is that the motion in the rth pair of modes is not in
a simple phase relationship with the corresponding component of unbalance, @,, as would be
the case with an axially symmetric system. At any given speed, the shaft does describe a
circular path around the bearing axis (as does a shaft possessing axial symmetry). This is in
contrast to the motion of an unbalanced axially symmetric shaft borne in asymmetric
bearings (Parkinson 1965). The vibration is, however, independent of the internal damping
factor, v,. This is a property which the system shares with shafts having axial symmetry (see,
for example, Bishop & Gladwell 1959).

Another feature of the result (23) is that the sensitivity of the shaft to a given unbalance
depends upon the angular location of the radial planes of unbalance in addition to the
distribution of the unbalance along the shaft. This observation can be established as a
result of some tedious differentiation of equation (23), but a simpler technique will be
adopted here which will also give some physical insight into the problem.

Equation (23) shows that, at a given shaft speed €2, the distortion in the rth pair of modes
may be rewritten in the form

7, = [E,a,e %+ F a¥] [function of 1], (27)

in which E, is a function of Q and F, is a constant. Thus at any particular shaft speed the
direction and, in part, the magnitude of this distortion is controlled by the terms inside the
first bracket in equation (27). These consist of two factors: (i) a constant vector parallel to
@) and independent of shaft speed, and (ii) a vector which is speed-dependent and parallel
to a,e 1%,

The combination of these two vectors is illustrated in figure 8 where an angle ¢, has been

used, being defined by tanf, = (a./a,). (28)

That is, 0, specifies the orientation of the 7th modal component of mass unbalance relative
to the axes OU, OV. At any particular speed, then, it is clear that the distortion will be a

maximum for an unbalance distribution such that these two vectors are in phase. Con-
versely, when the two vectors are in exact anti-phase the response will be a minimum.

Figure 8 shows that (@) the distortion is a maximum if 4, = — (6, —{,), that is if
2u, 0¥ Q)
0, =3, — bran (2 (29)
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14 R. E. D. BISHOP AND A. G. PARKINSON
and (b) the vibration is a minimum if §, = — (0, — ) +n, that is if
0, = 0, (for maximum distortion) -+ 4. (30)

The results (29) and (30) are in agreement with some conclusions of Taylor (1940), who
analysed the vibration of a disc on a light, flexible shaft with asymmetric stiffness (see
figure 4) and conducted some experiments on a large rotor. Taylor concluded that, at a
speed Q = of,T the maximum and minimum responses are caused by unbalance in radial
planes at angles 0, = {m and 0, = — }n respectively, relative to the plane OXU. That is, at
this speed, the maximum response is obtained when the plane of unbalance leads the
principal plane of minimum stiffness by 17 rad and the minimum response is associated with
an unbalance plane {7 rad behind this plane. There were some discrepancies in Taylor’s
experimental results—which appear to be displayed also by modern alternator rotors—
but one possible source of these may lie in the lack of symmetry that must be associated
with plain bearings.

14
Eyay y
/ .
g, E.d,e%r
Q /
roe
U
Ve
E.a}
FiGUure 8

The variation of @, for maximum distortion is portrayed graphically in figure 9. An
alternative presentation, in the form of a polar diagram depicting sensitivity as a function
of the angular location of unbalance at { = of, is given by Taylor.

For a given unbalance distribution the general nature of the amplitude/speed relationship
in the rth pair of modes depends on the inequality of the flexural stiffnesses and on the
external damping. Thus for large difference of stiffness, such that inequality (22) is not
satisfied, the shaft has infinite amplitudes at each end of the unstable region defined by
inequality (19). When the disparity is reduced until equality (22) is satisfied, the pairs of
speeds at which an infinite amplitude in the rth pair of modes may occur coalesce at
approximately Q = ¥. Any further reduction in asymmetry, or increase in external
damping, such that inequality (22) is valid, removes the infinite resonance peaks entirely.
In these circumstances the amplitude in the 7th pair of modes increases to a finite peak at
a shaft speed which, for a given shaft, depends on the angle §,. The amplitude/speed curve
in the rth pair of modes is similar to that for the system of figure 4, which was illustrated by
Taylor (1940, figure 7).

+ The analysis was confined to a simple two-degree-of-freedom model with a concentrated load and
observations were only made in the neighbourhood of the first critical speed w¥. Taylor’s results relate

essentially to the motion in the first pair of modes, being based on the rudimentary Jeffcott model of a
rotating shaft.
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SECOND ORDER VIBRATION OF FLEXIBLE SHAFTS 15

For all inequalities of stiffness and for all external damping, the variation of the phase
angle {, is identical to that for a symmetrical shaft with a critical speed o} in the rth pair of
modes.

90°
60°
%L
J
30° : /
I
/[l
yall
- #8035
s Sk 0:01
— - - // l
0 04 08 1-2 1-6 2:0
QJw¥
Ficure 9

VIBRATION OF A UNIFORM, HORIZONTAL SHAFT DUE
TO ITS OWN WEIGHT

So far, we have referred to the free vibration and the forced vibration due to mass
unbalance of a rotating, asymmetric shaft. These vibrations may be executed whether the
shaft is rotating about a vertical or a horizontal axis. Indeed, if the shaft is supported
vertically then the entire motion is confined to these forms of vibration. But if the shaft
rotates about a horizontal axis (as is usual) the equations of motion (8) and (9) must be used
with the terms on the right hand side which represent the weight of the shaft. It is the
purpose of this section—and indeed the main purpose of this paper—to investigate the
distortion of the shaft due to the weight force.

The relevant equations of motion are now

[b +b] —Q% +§Ig 1} Q"—%Qv’ = —gsin Qt, (31)
b,+ b, 'y EI
+[ ] Q2 (Ap) P 4+2Q +A Qv = —gcos . (32)

Alternatively these equatlons can be replaced by the single complex equation
EI+ (E[ )1 9
2 =)
Tt l: :l — ¥y 2 3x4
1[EI—(EL)"] o*n*
2 Ap ox 4

—l—21Qf7+1 be 97 = —ige™i% (33)
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16 R. E. D. BISHOP AND A. G. PARKINSON

The general solution for the forced motion governed by equations (31) and (32) that
satisfies the boundary conditions at each end of the shaft may be written in the following
form:

8

v= > (4,sinQ¢+B,cos Q) ¢,(x),

r=1

I

(34)

4

v =

Ms

(C,sin Qt+ D, cos Qf) §,(x).

i

T

If these expressions are substituted into equations (31) and (32) and the motion separated
into modal components by using the orthogonality condition (7), then the motion in the
rth pair of modes is described by the following matrix equation

w? — 20?2 —2(p,+v,) QuF  —2u,0FQ 2()? A —g,

2(u,+v,) Quf w2 — 202 — 2002 — 24, L) Bl |0 (35)
2, wFQ —20)2 w2 —20)2 —2(u,+v,) QuEilC. | | 0 |
2022 2u, 0 2(u,+v,) 0FQ 0,2 —202? D, —8,
h | L (“apde=£ [ 4,xd
where 6=z @ Wdx=£ [ g (36)

The solution of equation (35) for the four coefficients 4,, B,, C, and D, is lengthy and the
resulting expressions are complicated. Later on, we shall take up a simplified special case,
but it is worthwhile, before doing so, to examine the nature of the solution (34). This
solution may be expressed in the complex form

Ms

= 2 (Be!%+Q, 7% g (x), (37)

I

r=1

where the coefficients P, and @, are complex. In general, then, the weight of the shaft
causes a motion in each pair of modes that would be seen by an observer rotating with the
shaft as the sum of forward and backward circular motions—both executed with the speed Q.

It is perhaps more useful to note the form of the motion (37) in space—that is, relative
to the fixed axes, OYZ. In complex notation, the displacement is

u+iu, = g = 21 gr¢r(x)’ (38)

This is related to the displacement 7 through equations (1), the transformation in complex

notation being £ —poi, (39)
The vibration (37) can thus be expressed in the form

E= 2 (Pe?*+Q,)4,(x). (40)

1

il

T

This describes the motion, as it is seen by a stationary observer.

So far as the rth pair of modes is concerned, then, the shaft weight causes:

(i) a steady deflexion @, ¢,(x) which is in the nature of a ‘sag’ (though it will not, in
general, be vertically downwards) together with

(ii) a forward rotation with twice the angular velocity of the shaft rotation.
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SECOND ORDER VIBRATION OF FLEXIBLE SHAFTS 17

It is of interest to notice certain special cases. If there is no difference between EI and
(EI)’, so that w, = w;, the square matrix in equation (35) may be partitioned in a simple
fashion. When this condition obtains, it may be shown that

—i
b, =0; Qr:mi,fz)rﬁ- (41)
That is to say, the ‘double-frequency’ vibration does not occur, and the static sag becomes
that of a shaft with axial symmetry (Bishop & Gladwell 1959).

A second special case will be examined in the next section. It is that of a shaft which,
while it possesses unequal flexibilities, has no internal damping. The assumption that
v, = 0 leads to considerable simplification of the theory without—it seems—making it too
restricted. It might be added that few writers have made allowance for internal damping
when studying any aspect of shaft vibration, let alone the present problem. T'wo prominent
exceptions to this are Smith (1933) and Dimentberg (1961), who both discuss some of the
effects of internal damping.

SHAFT WITH NO INTERNAL DAMPING

If a large alternator rotor is slung from a crane and made to execute a forced vibration in
the horizontal plane as a free—free beam, it is found that very little power is needed. Modal
Q factors of 200 to 400 have been reported by P. G. Morton in a contribution to the discussion
of the paper by Lindley & Bishop (1963). This observation has also been made by L.. S. Moore
of G.E.C. (Witton). By contrast, the modal @-factors of such shafts when they are rotating
are relatively low, being about 6 (see Lindley & Bishop 1963). Although these results are
by no means based on refined experiment or theory, they do give a clear indication that
#, > v, for large alternators. We now proceed, therefore, under the simplifying assumption
that v, = 0.

If the square matrix of equation (35) is now inverted it gives

4 - [(07—4Q7) (402 Q2 —0f0?) — 16107 O] g,
r A ’

B = Qﬂ,w;"wFQ(w;Z “0)3) 8r

o _ W0 Qo) g, (42)
r A s

b L4002 o?0?) (3 —40%) — 16 u Vg,
r A ’

where A= (40F2Q? —w?w,?) 24 1642 0F6 Q2. )

The additional complexity of allowing for internal damping may be illustrated by the
expression for A obtained from the complete solution of equation (35). We find that

A = (0202 —40¥2Q2)2+ 8w}2 Q2[8v2 Q4+ 20 (2u,+7,)% — 2} 0222
+2(/lr+Vr)20)f4-——Vr(2ﬂr+Vr) 0)3 (‘)7/'2]‘ (43)

3 Vor. 259. A.
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18 R. E. D. BISHOP AND A. G. PARKINSON

When they are substituted into expressions (34), the results (42) give the information
necessary for finding P, and @, in equations (37) and (40). Itis found, in fact, that

ig, (07— 02) i

Pr = 8w*2J[(Q2—Q2)2+ﬂfw*2Q2] s (44)
_ gl 0F Q0 — ) 02O —O2) (0F?— 402) — 4205202 (15)
Q= 16074 (Q2 — Q)24 2 02 (7] ’
where , = 921(;)%’ (46)
*
and 0, = tan“l(srzw 32) (47)

The symbol Q, introduced in equation (46) turns out to be of physical significance, being
of the nature of a ‘critical speed’. By rearranging equation (46) it is found that

o[- )] @

and, for shafts with only small inequality of stiffness (such as large alternator rotors), this
uantity has the approximate value .
1 Y pp Q, = Jo¥. (49)
It has been shown that the distortion of the horizontal shaft, due to its own weight, can be
separated into two distinct parts by writing

g — é’(l)+g<2), (50)

where K — 3 EVg (x) = 3 Q,4,(x) (51)
r=1 r=1

and £~ 3 E() = 3 P, (x) et (52)
r=1 r=1

At any speed €2 the shaft has a constant deflexion described by relation (51). The centre line
of the shaft also rotates about the axis of the bearings with a speed 2Q, while the shaft rotates
about its own axis with a speed . That is, the shaft axis performs a second order vibration
relative to the fixed axes OXYZ. We will discuss the two components of the total vibration
separately.

(a) Constant deflexion

At low speeds  the constant deflexion in the rth pair of modes is given by
&Y > —ig,[4} (Q<Q,). (53)

As one would expect, the constant deflexion is vertically downwards (the axis OZ is defined
to be vertically upwards).

If the speed of rotation € is increased, the denominator of equation (45) suggests that
a sort of resonance should occur in the 7th pair of modes at the speed Q, (see equations (48)
and (49))—a possibility which obviously must be examined. Infactat thisspeed the constant
deflexion has the form


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SECOND ORDER VIBRATION OF FLEXIBLE SHAFTS 19

Thus, when the shaft has a speed €2, the constant deflexion has components in the vertical
and horizontal directions. Since (), = 1w, normally, the constant deflexion in the vertical
direction is virtually unchanged from its magnitude at low speeds. Moreover, the horizontal
deflexion represented by the real part of equation (54) is small. In practice one is interested
mainly in shafts with small asymmetry and which are stable in the intervals defined by the
pairs of speeds (20). For these shafts the asymmetry must be sufficiently small to satisfy
inequality (21). With normal external damping this implies that the magnitude of the
imaginary part of £ in equation (54) is considerably greater than that of the real part.
The ratio of the horizontal deflexion to the vertical deflexion in these circumstances is less
than g, 0}/Q,. Therefore the constant displacement of the shaft at a speed €2, is still pre-
dominantly vertically downwards and of approximately the same magnitude as the
deflexion at low speed. There is no danger of a large increase in this displacement at the
speed €2, and no true resonance in the constant deflexion.

Further increase in shaft speed to values well above €, produces a constant displacement
of the form > —igfot (@3 Q). (55)
That is, at high speeds the constant deflexion in the 7th pair of modes is again vertical, and
approximately equal to the displacement at low speed. The assumption that v, = 0 is not
made in a previous treatment of shafts possessing axial symmetry (Bishop & Gladwell 1959).
The results indicate that the present conclusions may be modified slightly by the presence
of internal damping. Clearly the constant deflexion does not vary appreciably with shaft

speed.
(b) Second order vibration

The second order (or twice-per-revolution’) component of the vibration described by
equation (40) is of the form
4, (x)

o = rgl 2. (x) = 2 T2 — OB+ 12 0¥ (] e2ior, (56)
- ’2__ 2
where 4, = l‘i’( 5 +22) (57)

If the disparity between stiffnesses is modest, so that equation (49) holds good, this
vibration is described approximately by
4,e7ior g, (x)

0% X - ) (58)
where 0, = tan“’(?{{?h%) R (59)

and where the effectiveness of g, in producing an ‘amplitude of excitation’, 4,, is fairlysmall.

The expressions (47) and (56) or (58) and (59) are similar to those representing the
forced vibration in the rth mode due to mass unbalance of a shaft with axial symmetry in
the same bearings. For the symmetrical shaft, v, = w, = 0} and it is shown elsewhere
(Bishop & Gladwell 1959) that the rth component of mass unbalance @, = a,+ia, produces

a vibration © 0%, e 14 g, (x)
g = 7-;1 J[(w*2 Q2) +4/“ (I)*ZQZ] Qt, (60)

2u, ¥ Q
where {, = tan™! (0,532,,92) : (61)

3-2
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20 R. E. D. BISHOP AND A. G. PARKINSON

The frequency of the vibrations represented by expressions (56) and (58) on the one hand
and by (60) on the other are not the same, but the other factors are similar. The second order
vibration of equations (56) or (58) is, therefore, a forced vibration with critical speeds
Q,€,,Q,, .... For any shaft speed €2 the centre E of the shaft at any axial section describes
a circle about the bearing axis with a speed 2Q. ‘

In so far as the magnitude of the component of the exciting force in the rth pair of modes
(represented by 4,) is independent of shaft speed €, the second order vibration is even more
closely analogous to the forced vibration due to elastic unbalance—or initial lack of straight-
ness—of an axially symmetric shaft. Thus equation (90) of Bishop (1959) gives the expression

wf%e, e g (x)
= ~/[(w"‘2 075 4y 0?0

for this motion, where the initial bend is represented by

elo! (62)

vy = 3 8,4, (63)

Parts of the descriptions given previously of these two forms of first order vibration are
directly applicable to the present second order motion (for example, Parkinson, Jackson &
Bishop 1963). Thus at low speeds the distortion in the rth pair of modes becomes

teQt igr (0);2—&)2

g(2) gl% — 493 w;2+a)§) e2ial (Q < Qr) (64:)

At these low speeds of shaft rotation the distortion of the shaft in the rth pair of modes is in
phase with the modal component of the exciting force 4, e2%. Comparison of equations (53)
and (64) shows that, at low speeds €2, the amplitude of the twice-per-revolution vibration
is less than the constant deflexion &V,

The circular motion &2 of the centre E of any cross-section of the shaft while the shaft is
rotating through half a revolution about its own axis is illustrated in figure 10 (a) (i). The
second half revolution produces a similar motion of the centre E and is sketched in
figure 10 (a) (i1). The arrow should be thought of as being marked on the cross-section so as
to pass through Ein figure 5 and lie parallel to the OV axis. At these very low speeds, inertia
forces play no significant part and the vibration can be thought of in terms of statics; thus
the sag is greatest when the plane of maximum flexural rigidity is horizontal.

As the speed € of rotation of the shaft is increased the amplitude of the twice-per-
revolution vibration increases. The shaft approaches a state of resonance as Q — Q,, at
which speed the vibration in the rth pair of modes becomes

£ = e iz eiat & (");2“0)3) e2iat
0 L, %w* 44,0} Q, 02 +0?
. (Ap\ (EI ;
:é:(%) EEI? +E162 o (Q—Q). (65)

The amplitude of this vibration is considerably larger than that at low speeds, being roughly
1/2u, times as great. The response in the rth pair of modes is 37 in phase behind the corre-
sponding component of the exciting force, 4, €219, The actual circular motion of a point on
the shaft centre line is illustrated in figures 10 (8) (i) and 10 (4) (ii) for one complete rotation
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SECOND ORDER VIBRATION OF FLEXIBLE SHAFTS 21

of the shaft about its own axis. The presence of the term €2, in the last expression for £2 in
equation (65) shows that, ignoring the factor g, which is discussed later, the modal com-
ponents decrease in magnitude, as the order of the mode increases.

(i)

ZSZt- Q=271
29
”
2Qt=37 7
90t=17 2 ogt-4n 20t=37 (a) Q <L,
2Qt=T 2Qt=31
L7 %”
2
22 22,/
n 0 3T 27 (6) Q = Q,
g Zm
b 37
28 / 2Q /
3 5
5 i I 27 (¢) Q> Q,
0 2
Ficure 10

It should be noted that for shafts which are stable at all speeds between €2 = v, and w,—
that is, for which the external damping factor satisfies inequality (21)—the amplitude of
the displacement £? of equation (65) is subject to the limitation

. gr

621 < 2o)§‘r.Q TazT wir?
If this result is compared with that of equation (53) it shows that, even when the second
order vibration has its maximum amplitude, this is not greater than the approximately
constant, non-rotating deflexion of equations (53), (54) and (55). It is worth remarking
that, normally, static sag is not monitored for alternator shafts at speed. Indeed, commonly
even the measured vibration is not that of the shaft, but of the bearing housings. These
theoretical predictions seem to throw emphasis on the need to measure sag and its variation
with speed.
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22 R. E. D. BISHOP AND A. G. PARKINSON

Finally, for very high shaft speeds, the twice-per-revolution vibration in the rth pair of
modes has the form

~im p2iqt i 22
g Qze - —isgzrz ( t2+w ) A Q>0 7
This distortion is very small and is approximately in antiphase with the exciting force com-
ponent 4, e?e. The double circular motion of the shaft centre during one revolution of
the shaft about its own axis through £ is illustrated in figures 10 (¢) (i) and 10 (¢) (ii).
It is of interest to note that Hull (1961) published experimental results for a rotor con-
sisting of a disc supported on the end of a light cantilever shaft which are in agreement with
the predictions of figures 10 (¢) and (c).

a ¢x(x)
x/l 10
ﬂ\\l/ (B) ()
ﬂ\ m o

Ficure 11

It has been shown that the weight of a uniform horizontal rotating shaft with dual
stiffness can generate two forms of vibration—a non-rotating displacement and a second
order deflexion. These vibrations are not entirely a consequence of the inequality of stiffness,
however. For an axially symmetric shaft the non-rotating component of the deflexion
described by equation (51) still occurs, although in a modified form. It is given by
equations (40) and (41), although for the purposes of comparison here it is necessary to
set v, = 0. The second order part of the vibration, however, is created completely by the
inequality of shaft stiffness (see equations (44) and (52)). The motion is, moreover,
independent of mass or elastic unbalance. If, therefore, the twice-per-revolution vibration
is larger than is desirable for any particular shaft, it can only be reduced by decreasing
the disparity of stiffness—that is by modifying the design of the shaft.
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SECOND ORDER VIBRATION OF FLEXIBLE SHAFTS 23

The seriousness of the second order vibration varies from mode to mode. The component
g, of the disturbing force in the rth pair of modes is related to the corresponding characteristic
function ¢,(x) by equation (36). Intuition suggests that the component g,, for the first pair
of modes, is greater than all other components. The characteristic functions for a uniform
‘clamped-pinned’ shaft are sketched in figure 11. Clearly the area under the curve repre-
senting @, (x) in figure 11 (a) is greater than the net areas under the curves for ¢,(x) and
$5(x) (shown in figures 11 (4) and (¢)). Thus g, is greater than g, or g, for this shaft.

The areas under the curves for the even numbered functions ¢, @y, ..., all vanish if the
shaft concerned is symmetrical about its mid-span section. In this event, the even numbered
components are all zero. In practice, many shafts are at least approximately symmetrical
about mid-span so that one would expect the even modal components to be small.

Mortensen & Ryan (1940) reported a test on a simple model of a two-pole alternator
rotor for which a second order vibration was observed with a critical speed at jof. There
was, however, no similar resonance in the second pair of modes with a critical speed of

This matter of the relative magnitudes of the modal components is of some technical
importance. A table of values is therefore presented in the Appendix. The table lists the
modal components g, of the weight force in the first five pairs of modes for all uniform shafts
with ideal end conditions.

ISOLATION OF MODES IN SECOND ORDER VIBRATION

In recent work on shafts possessing axial symmetry, a technique much used in resonance
testing has been adapted to the problem of separating the forced vibration into modal com-
ponents. Examples of this forced vibration are contained in equations (60) and (62).
Initially this research was concerned with shafts with close natural frequencies in flexure.
Adjacent modes of such shafts can interact and the application ofa modal balancing process—
which depends on treating each mode individually—can thereby be made difficult. When
a suitable means of isolating the modes had been found, however, the simplicity of the
method suggested that it might be a valuable tool in the interpretation of observations of
the forced vibration even when the critical speeds are widely spaced apart. This work has
been fully discussed elsewhere (Bishop & Parkinson 1963). The purpose of the present
section is to demonstrate that the same technique can be used with advantage in analysing
experimental dataon thesecond order vibration of a horizontal shaft with unequal stiffnesses.

In essence the method consists of plotting the complex response vector 7 on an Argand
diagram. It is found that the end of the response vector in any mode very nearly describes
a circle. For example the rth component of the response of an axially symmetric shaft to

mass unbalance is given by
e_igr

= o= ggerr e Y

(68)

(see equations (60) and (61)). The response vector OP is plotted on an Argand diagram in
figure 12. The real axis OR is now defined as being parallel to the force vector of excitation
in the rth pair of modes and the imaginary axis is located as shown. The figure shows the
response of the shaft relative to the direction of the modal component of the force. If the
whole figure is imagined as rotating counterclockwise with angular velocity Q, then the
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24 R. E. D. BISHOP AND A. G. PARKINSON

line OP gives the response £ through the conventional rotating-line representation of a
harmonically varying quantity.

The nearly circular locus has two important properties. First, the point D on the circle
which corresponds to the critical speed, {2 = w,, is the point at which the rate of change of
frequency with distance along the circular arc is a minimum. That is, if the response is
plotted at equal intervals in shaft speed, D is the point with maximum spacing of points
along the arc. This is illustrated roughly by the spacing of the points in figure 12. Secondly,

S (’lr)
QL
o > )
f2]
Wr
1
Ficure 12

the diameter OD (or ‘resonance diameter’) of the modal response circle is perpendicular
to the real axis—that is to the direction of the line representing the exciting force. This is
because there is a phase lag of {7 rad in the condition of resonance. Either of these properties
can be used to determine the critical speed and the plane of unbalance in the rth pair of
modes (see Bishop & Parkinson 1963). The modal circle can also provide the value of the
external damping coefficient g, in the rth pair of modes (for example, see Bishop & Gladwell
1963).

If the total response vector (see equation (60)) is plotted in this manner for a wide range
of speeds, including several critical values, the response locus consists of a combination of the
corresponding modal circular arcs. These circles do not, in general, pass through the
origin O. For near resonance in any one mode, the total displacement vector may also
contain a nearly constant contribution from the other (extraneous) modes. As a conse-
quence the corresponding modal circle is displaced from the origin by this constant vector.

Furthermore, equation (60) shows that the direction of the exciting force in each mode
depends on the direction of the component of unbalance, a,. In plotting the complete
displacement vector, 7, an arbitrary datum line must be assigned to be the real axis in the
Argand diagram. The forces in the various modes have differing directions relative to this
datum line. Consequently the resonance diameter, 0D, may have a different direction for
each mode. As an example, we reproduce in figure 13 the locus of the response vector for


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SECOND ORDER VIBRATION OF FLEXIBLE SHAFTS 25

a uniform continuous shaft in a speed range including the two lowest critical speeds (see
Bishop & Parkinson 1963, figure 20 (a)).

The similarity between the second order vibration described by equations (56) and (57)
on the one hand and the forced vibration of an axially symmetric shaft represented by
expression (60) on the other has been noted earlier in this paper. One outcome of this
similarity is that the graphical analysis outlined above can be applied to the second order
vibration. Indeed in one respect the twice-per-revolution vibration is simpler to portray
in this way than the distortion of an axially symmetric shaft due to mass unbalance. The
reason for this may be seen from the following argument.

...20_
p,/*4250 +4300
2750%

\
\
\

42200\ V7107
42000 \ \

', 3800

4150, \ | 3500 4!

, 20008 Y oso20 Jdla_.tum
9, 2680757 * 57| e~ 4400 | _line
20 266)(?( 0, | O\ 25004450 20
2640 4550
/s;mft; rotation

+10l

Ficure 13. The axes are graduated in multiples of 0-0011in., the speeds of observation being

marked in rev/min and at intervals of 10 rev/min in the region of the critical speeds. The

resonance diameters in the first and second modes are indicated by the lines 0,D, and 0,D,
respectively.

Equation (58) gives _
Ar e~ior

£ = {J[(QE_Q2)2+4/¢3 0z Q?]

for the rth pair of modes when the difference between the stiffnesses is fairly small. Here

} eZiQt (69)

4 =1 (6—0;2 wf) = imaginary constant
r 118, 0);-2+w3 g Yy g)

21,Q, Q) 70
o, = tan™! (Q,ag Qz) ) (70)

Q

= Ly¥*
L = dof.

The contents of the curly brackets in equation (69) depend on £ in the same was as 7, does
in equation (68). In other words they will produce a circle diagram of the same type when
plotted for different values of Q.

According to equation (69) the centre of the shaft executes a circular motion of the form

£ = R, exp{i[2Q¢-+ i1 —0,]}, (11)

4 Vor. 259. A.
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where R, is the radius of the circle. The real and imaginary parts of £2 are the double-
frequency contributions to the displacements « in the direction 0Y and «' in the direction
0Z respectively (see figure 5). This physical interpretation shows how the circle diagram
may be plotted in practice. For the radius R, may be found (to within a multiplying scale
factor) by monitoring one of the components of displacement, u say, and filtering it at twice
the rotation frequency. Variation of the phase angle §7— ¢, can be observed directly from
the vibration trace if it is marked regularly twice per shaft revolution (through the use of
two diametrically opposed datum marks on the shaft for instance). It has not proved
difficult to devise electronic measuring techniques for these purposes.

| I [ [ [
Q=0'99S23

o — g — s

0 02 ‘ 04 0-6

Ficure 14. (a) Response in the first three modes. The unlabelled points - are plotted for Q/Q; = 0-95
(0-01) 1-05. (b) Enlargement of part of (a) showing response in the second and third modes.
The points + are plotted for Q/Q, = 0-95 (0-01) 1-05 and the marks | for Q/Qq = 0-990 (0-002)
1-010.

Tt will be seen that all the modal components of the ‘exciting force’ 4, in equation (69)
are in phase with each other (that is, for » = 1,2,...). This is reflected in the Argand
diagram when £2 is plotted since some fixed direction represents the direction of every
modal component of the exciting force. Thus all the resonance diameters are parallel with
each other.

The situation is best explained by means of an example. Figure 11 shows the first three
characteristic functions for a uniform ‘clamped-pinned’ beam. Figures 14 and 15 display
the variation of the response vectors with shaft speed  at points x = 0-3/ and x = 0-8/
respectively along the shaft as the speed is increased from a low value to a value above (2;.

The curves in figures 14 and 15 are calculated from the equation

o 0?2 —0?\ 3 g (Q)? ie"iorg (x
£@¢ 291:1_%%_ (m) Elgé(ﬁf) o 2¢ fu,?)a);”gz . (72)
JL0-g) + 5]

2
The factor outside the summation sign is the same for all modal numbers 7 (see inequality
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SECOND ORDER VIBRATION OF FLEXIBLE SHAFTS 27

(21)) and so can be omitted as a scale factor. The value ¢, = 0-05 is used, #, and g, being
calculated through relations (16). Itcan be seen that the resonance diameters in all three
modes are parallel, although the diameters in the second modes are in opposite directions.

6 I | I | T
Q=0-95Q, (@)
4.__
2__
0.._.
0
_4—
-6l ] ! l | |
-2 0 2 4 6 8 10
0-4 : ; I I | l I
(®)
- Q‘—‘O'QQQS ]
02+ I
o~ /0 oREmEeney Dy -
/% S B
-0-2 _
- -
Q=101\Q3
-0- | | | | | | | | | |
0_.%,4 ~02 0 0-2 0-4 06

Ficure 15. (a) Response in the first three modes. The unlabelled points - are plotted for /Q; = 0-95
(0-01) 1-05. (4) Enlargement of part of () showing response in the second and third modes.
The points * are plotted for Q/Q, = 0-95 (0-01) 1-05 and the marks | for Q/Q; = 0-900 (0-002)
1-010.

4-2
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28 R. E. D. BISHOP AND A. G. PARKINSON

In practice, therefore, one would monitor the amplitude and phase of the second order
vibration as already mentioned. This response vector can be plotted on an Argand
diagram and circular arcs fitted to the locus in regions where the frequency spacing suggests
resonances (as, for example, near the points D), D, and D, in figures 14 and 15). The actual
secondary critical speeds £2,,€,, (2, ... can be found by locating the points of maximum
frequency spacing or by constructing the resonance diameters—parallel to the real axis—
of the circular arcs. These diameters are the broken lines through the points D;, D, and D,
in figures 14 and 15. Alternatively the critical speeds €}, £,, Q, ... are the speeds corre-
sponding to those points on the locus whose distances from that axis through the origin which
is perpendicular to the resonance diameters are local maxima. The accurate determination
of these speeds from conventional ‘amplitude peaks’ is not easy; indeed the correct inter-
pretation of amplitude peaks is often a matter of great difficulty.

INDUSTRIAL ROTORS

There is no longer any question of the importance of secondary vibration so far as large
industrial rotors are concerned. Amplitudes of vibration of 0-005 in. or more have frequently
been observed at the bearing pedestals and these are much too high to be allowable in
service. For this reason various aspects of secondary vibration have been studied. For
instance, it is desirable to discover what differential stiffness effects arise from the wedges
that prevent electrical conductors from flying out. Again, it is common practice to attach
by means of a rigid coupling an exciter to the opposite drive end of an alternator; how does
the attachment of this exciter affect the double frequency vibration? Questions such as
these are of considerable practical importance.

As might be expected, this type of research requires specialized study which can only be
carried on in industry. Results are being accumulated rapidly and no doubt these will
appear in the technical literature in due course. As this paper describes an analytical tool—
the polar plot—with which this type of investigation can conveniently be made, however,
it is not inappropriate to refer briefly to results taken from an actual rotor.

Figure 16 shows the polar representation of second order vibration for the two main
bearings of a 350 MW alternator-rotor. The rotor was driven through a double Hooke joint
and the horizontal transverse vibrations of the pedestals were monitored and measured as
functions of rotation speed. The signal obtained in this way was filtered at twice the rota-
tional frequency. The phase of the rotor distortion (which distortion, to a stationary
observer, produces the ‘vibration’) was measured relative to a diametral (as opposed to
‘radial’) plane fixed in the rotor and revolving with it. Curves were drawn of amplitude
and phase against speed and readings were thus obtained for regular 20 rev./min intervals.
"This procedure was adopted, as it would be difficult to take readings directly for accurately
spaced speeds, because of the high polar moment of inertia of an alternator-rotor and the
consequent difficulty of quickly imposing on it a predetermined speed.

The results to which figure 16 relates were in fact taken from an unwound rotor which had
no exciter attached but which had iron in the pole faces, installed in continuous lengths. The
results are for a limited speed range and were taken during the course of a research pro-
gramme. Aside from the evident absence of instability, they secem quite reassuring in the
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SECOND ORDER VIBRATION OF FLEXIBLE SHAFTS 29
light of the foregoing theory. It will be seen that the following features are displayed by the
curves, all of them in line with the predictions that have been made:

(1) Points corresponding to equal increments of speed ‘open out’ and ‘close up’.

(2) Where the points open out, the curve forms arcs that are approximately circular.

Ficure 16. , Vibration of drive end bearing; ———~—, vibration of opposite drive end
bearing. The points are labelled in rev/min and those marked ¢ are plotted at intervals of
20 rev/min.

(3) The most obvious arcs are centred approximately on 550, 1700 and 2000 rev/min.
If the two resonance diameters of the arcs at each of these speeds were constructed, they
would be approximately parallel, showing that the pedestals are moving in phase in each
of these modes. This would be expected in the odd numbered modes at half the critical
speeds of odd order.

(4) The spacing opens out at about 1300 rev/min with the resonance diameters approxi-
mately in opposite directions, showing that the pedestals are moving approximately in
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antiphase in this mode. This corresponds to a second mode oscillation and, as the theory
predicts, the modal response is far smaller than that in the first mode (at 550 rev/min).

(5) All the resonance diameters are approximately parallel to one another; this seems
plain at 550, 1300 and 2000 rev/min, but less clear at 1700 rev/min.

It is worth noting an interesting and potentially useful by-product of this form of analysis.
It furnishes a means of accurately measuring critical speeds that are greater than the
maximum permissible running speed. This provides useful checks on theoretical calculations
of critical speeds (which calculations are still a matter of great difficulty, especially so far as
the effects of bearings are concerned). Secondly, this information can well simplify the process
of balancing modes whose critical speeds lie above the maximum permissible driving speed.

The authors wish to acknowledge the personal co-operation of J. W. Laing, L. S. Moore
and Miss E. G. Dodd of the General Electric Company, Witton, who provided the results
from which figure 16 was drawn.

AprpPENDIX. CALCULATION OF THE FACTOR g,
This appendix is concerned with the values of the modal components of the weight force
described by the terms g, g,, g3, ... which are defined in equation (36). Remembering
relations (5), equation (36) can be rewritten in the following form

g&_ _EI_[dig,

¢ oHpZ |, d (73)
The expression for g, can now be integrated readily to give
& d*g ) _ 1L\ A%,
vzl an] =200 [s'as], (74)
in which we have substituted Ap = w2 Ap/EL (75)

The factors Z and A,/ and the functions 1;3d?%),/dx* have been tabulated by Bishop &
Johnson (1960) for the lowest five modes of flexural vibration of uniform beams with ‘ideal’
end restraints. The factors g, g,, ... can thus be calculated readily and the results are listed
in the accompanying table.

It should be noted that rigid body modes (see Gladwell, Bishop & Johnson 1962) are used
in the appropriate calculations and in these cases equation (36) is integrated directly. Thus,
for example, the first and second modes of a free—free beam are rigid body modes. The values
of g, derived from rigid body modes are marked accordingly in table 1.

TABLE 1. MODAL COMPONENTS OF WEIGHT FORCE FOR VARIOUS UNIFORM BEAMS
(* Denotes rigid body mode)

end conditions &1/g 8l8 /¢ 8lg 8lg
clamped-clamped 0-83 0 0-36 0 0-23
pinned—pinned 1:27 0 0-42 0 0-25
clamped-pinned 0-86 0-08 0-33 0-04 0-21
clamped—free 0-78 0-43 0-25 0-18 0-14
clamped-sliding 0-83 0-36 0-23 0-17 0-13
pinned-sliding 1-27 ~0-42 0-25 —0-18 0-14
sliding—sliding 1-41%* 0 0 0 0
free—free 1-00%* 0* 0 0 0
pinned-free 0-87* 0-37 —0-20 0-14 —-0-11

sliding—free 1-00* 0 0 0 0
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FIGURE 3 (a). (By courtesy of General Electric Company, Witton.)
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